
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 31

Vriksh: A Tree Based Malayalam Lemmatizer Using

Suffix Replacement Dictionary

Dhanya P.M

Dept of Computer Applications, CUSAT, Kochi, India.

Dr. Sreekumar A

Dept of Computer Applications, CUSAT, Kochi, India.

Dr. Jathavedan M

Dept of Computer Applications, CUSAT, Kochi, India.

Abstract – Morphology is a term in Natural Language

Processing(NLP) which refers to the different forms a particular

word can take. The process of removing the affixes from the word

and extracting the stem is called stemming. The lemmatizer

generates the root word from the given word rather than reducing

it to the stem. Lemmatization is very important in any NLP

project since only the root word can contribute to the word count.

This explicatory paper presents two methods for extracting the

root word from a Malayalam word .One is clustered indexed

dictionary based , which uses a suffix replacement method by

considering nearly thousand rules which are identified by several

test cases done during the development of the project. The second

method creates a tree from the set of rules . The permanently

stored tree is then searched for a path which matches with the

suffix and the corresponding leaf node , which is the replacement,

is retrieved. Testing with online Malayalam documents helped in

finding out and adding several rules to the dictionary. This is a

pioneer lemmatizer which uses a tree based method.

Index Terms – Suffix, Replacement, Prefix, Lemma.

1. INTRODUCTION

Since Artificial Intelligence mainly deals with inducing

intelligence in computers so that they can behave like human

beings, programming them to understand natural languages

like English, Hindi, Malayalam etc. is gaining importance. It is

obviously due to the area of artificial intelligence, sub areas like

Natural Language Processing, expert systems etc. develop.

Interaction of the user with the system using natural language

can be either through natural text or natural language speech.

Thus text mining has been an important area of research under

Natural Language Processing. So text document processing has

many sub areas where their accuracies increase only if the

words are reduced to their root form which we call as the

process of lemmatization. This text mining in any language

requires the word to be converted to the root form. Malayalam

is a language which is spoken by over 33 million people in the

state of Kerala, India. Malayalam words are subjected to

morphology to a large extend. A particular word in Malayalam

can take more than 100 affixes and same is discussed in section

3. Due to the complexity of the words, lemmatization is very

much required and very difficult in the case of a language like

Malayalam. Stemmers are already available in languages like

English, Arabic, Persian etc. Many stemming algorithms have

been developed in various Indian Languages also. A

lemmatizer [1] is developed in Malayalam which is a three pass

method.

2. RELATED WORK

Spanish version of Porter Stemmer is used as preprocessing

tool for correctly extracting the text in each document image

[2]. This helps in forming the bag-of-words vector. The

performance of various page classifiers are being compared for

all of which stemming is an important module which affects

the accuracy of the system. The method [3] has considered stem

and suffixes for word segmentation in Mongolian language.

Application of predefined pattern to derive the stem words are

discussed in the paper authored by [4]. The presence of affixes

results in a large vocabulary in any language. They discussed

rule based, direct, interlingua, transfer, statistical, example

based, knowledge based and hybrid methods of translation

where stem and affixes play a vital role. The document

similarity calculations like tree based, time series, vector based

and different text clustering methods like hierarchical,

partitioning, combination and multilevel clustering mentioned

in [5] requires the word to be stemmed. Stemming, the removal

of affixes, is used as the preprocessing task for the calculation

of term frequency and is used in Map Reduce framework for

text summarization as in [6]. In [7], the authors mention about

factorizing words in to morphological components which

requires the stem to be extracted.

There are some stemmers developed in Asian languages like

Arabic [8], which removed both prefix and suffix of given

word. Since prefix words are very rare in Malayalam, the

algorithm we developed has considered suffixes only. The

Indonesian Stemmer [9], is based on finite state automata. A

best word candidate is selected from a candidate list. A detailed

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 32

survey on stemming is done in [10] referring to many

languages around the world like English, Czech, Bulgarian,

Turkish, Greek, German, Dutch, Portuguese, French etc. Some

methods discuss about integrating stemming rules [11] and

have considered both suffixes and prefixes.

The stemmers developed in Indian languages are surveyed by

[12]. The Gujarathi stemmer [13] and the one developed in

Bengali [14] uses a rule based approach. Stemming has reduced

the number of unique words and they have considered both

understemming and overstemming. In [15], they use minimum

stem set model of stemming which gives an accuracy of 80% -

88%. They have tested for languages like Hindi, Marathi,

Malayalam and English. The method has an input word list and

an input suffix list. There are methods which uses a

probabilistic approach[16] using a suffix list. An Urdu stemmer

is developed by [17].

A stemmer in Hindi language was developed by [18] .The

stemmer developed by [19] , stems only nouns and proper

names with the help of a dictionary. One among 19 conditions

is applied for an input Punjabi word and the result is checked

against a Punjabi Name list. The method suggested in [20],

show how word sense disambiguation is benefited from

stemming. Here testing is done with the help of a sense list

created from Hindi Wordnet. In word stemming implemented

with the help of hashing[21], the authors have considered

nominal inflections, prenominal inflections and verb

inflections. The rule based stemmer in Hindi [22] makes use of

a Hindi WorldNet. The Tamil stemmer [23] is clustering

stemmed words using k-means to improve the IR system and

the one developed by [24], deals with Tamil suffixes only.

In Malayalam stemmer [25], stemming is done using Finite

State Automata. FSA is modeled using all possible suffixes and

have considered singular nouns, plural nouns and verbs. In [26]

the authors used a method of recursive suffix stripping with an

accuracy of 83.67%. If a word has three suffixes then it is

processed thrice. The system is a sub module of a sentence

parser and the accuracy rely on the dictionaries being used. In

morphological analyzer developed by [27], rather than root

extraction, morphological features like noun/verb, number:

plural/singular and tense: past/present/future are also extracted.

In the light weight stemmer developed by [28], they developed

a suffix dictionary and used the suffix stripping algorithm to

get the stem. Here the word after stripping is taken as the output

which is not the actual root word. In the method developed by

[1], they used a three pass algorithm for a lemmatizer, while

the proposed method uses a single pass algorithm. The system

is used as a sub module of question answering system. In the

method suggested by [29], a rule list is provided separately for

nouns and verbs and gives an accuracy of only 60%. A

comparison of stemming methods developed in Indian

languages is shown in Table I.

TABLE 1. Comparison of Stemmers in Indian Languages

AUTHOR,
YEAR

LANGUAGE METHOD TESTING &
ACCURACY

Prajitha U

et.al,2013

Malayalam One pass

Suffix stripping
Used Suffix

Dictionary

Scanning from right to
left for the longest

match .

86%

Prajisha K,

2013

Malayalam Three pass

Suffix Stripping

Rule based system

97%

Testing done with

news artciles in the
web

Vinod P.M

et.al,

2012

Malayalam Morphological

analyzer

Recursive suffix

stripping
Uses lexical

dictionary,

Monolingual
dictionary and

Bilingual dictionary .

Testing with words

taken from

Malayalam

dictionary
83.67%

Jisha P .J et.al,
2011

Malayalam Morphological
analyzer

Uses Bilingual
dictionary and

Root dictionary .

Not
specified

Vijay S R
et.al,

2010

Malayalam Finite state automata
Next state is

determined

using Morphotactic
rules

Testing
done with

Online newspaper

94.76%

Jikitsha
S,Bankim P,

2014

Gujarathi Substitution rules

Evaluation
based

on EMILLE
corpus

92.41%

Das S,Mitra.P,
2010

Bengali

Using hash
table containing

suffixes of nouns,verbs

considers derivational
inflectional words

Tested
using FIRE

2010 dataset

Recall of 96.27 %

Vasudevan

N,Pushpak B,
2012

Hindi

Semi supervised

Stemming by weighted
minimum stem set

84%

Ramachandran

V.A,Illango K

2012

Tamil

Iterative Suffix

Stripping

84.79%

Kasthuri

M ,Britto R.K

2014

Tamil

Prefix, Question,

Conjunction, Case

Plural, Imperative
Tense suffixes

are stripped

Testing with docs

from net

The various langauges mentioned here are spoken in different states in
India. They are developed considering the features of their language.

3. MORPHOLOGY IN MALAYALAM

Since Malayalam language is rich in morphology, the

lemmatizer developed here employs a total of 1121 suffix

replacement rules. Morphology in Malayalam language is so

complex that a single word can take many different forms.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 33

Difficulty in developing a lemmatizer is due to this language

complexity. We can show this complexity by taking as example

a simple word (mavu) which means mango tree in English.

Some of the morphological forms of the mentioned word are

shown in Fig. 1.

 Figure 1 Morphology of word ‘mavu’

The word (mavu) which is a noun can be attached with one

preposition as (mavil) , (mavulla), (mavinte), (mavo),

(mavaya),(mavakkiya), (mavennal), (mavundu), (mavilla),

(mavum), (mavanu), (mavinu), (mavalle) , (maville) etc. The

same word can come with two suffixes as in the words

(mavilninnu), (mavillengil) , (mavayathinal), (mavayirikkum),

(mavanullathu), (mavupayogichu), (mavileykkanu),

(mavundengil), (mavanithu) , (mavilekkayi), (mavillathayi),

(mavilottu), (mavukalum) ,(mavinoduchernnu) etc. The word

mavu can come with three affixes as the cases

(mavilninnukondu), (mavukalumayi), (mavukalumanu) etc

and also with four affixes as in the following cases

(mavundayirunnappol), (mavilekkayirikkum). Similar

inflections happens in the case of verbs also.For example the

verb (varuka) can take one affix as in (vannal) , (vannilla),

(vannittu) etc . The verb can take two affixes as in the case

(vannennal), (vannittundu), (vannittanu), (vannittilla) etc.

The suffixes used in Malayalam language can be divided in to

singular suffixes, binary suffixes, triple suffixes and suffixes

with more than three parts. They can be categorized as

following.

3.1 Singular Suffixes

 Suffixes which end with 'chillu' - 'ththil', 'kal', 'ral',

'mbol', 'ngalil', 'mengil', 'ppol', 'uppol' etc are examples

which belong to this category.

 Suffixes which end with 'chandrakkala'. Some examples

of such category include 'rathu' , 'manu', 'ru', 'rodu',

'rkku', 'rkkai', 'arundu', 'rnnu', 'mennu', 'nnathu',

'ttathu'.

 Suffixes which end with 'u , e, ea '- 'rathu' , 'chchu' ,

'ththe' , 'ththinte' , 'kale' , 'ththode', 'loode' , 'katte' , 've',

'nude', 'yalle' etc belong to this category.

 Suffixes which end with 'i' – 'kumayi', 'koodi' , 'dakki',

'kkayi', 'ippoyi', 'raadi' etc are few in this category.

 Suffixes which end with 'anunasika' – 'kum', 'makaam' ,

'ththinum', 'yolam', 'kalum', 'injnjum' .

 Suffixes which end with 'a, o' – Some of the cases are

'maya' , 'malla', 'killa' , 'ninna' , 'unna' , 'kulla' , 'mo' ,

'yallo'.

3.2 Binary Suffixes

These suffixes consist of two singular suffixes joined together.

They can be further classified as the following.

 Suffixes which end with 'chillu' – Some cases include

'yennal, 'unnappol', 'rumbol' etc.

 Suffixes which end with 'chandrakkala' – 'ththileykku',

'mbaththekku', 'yumanu', 'mbozhanu', 'ngalkku',

'yittullathu', 'ninnanu', 'kondathinu', 'mayundu',

'nullathu' , 'dunnathu', lekkulathu ', mayittu ', 'nathinu'

nilekkanu', 'ilekkullathu', 'yilninnu', 'lanithu',

'ththilumundu'.

 Suffixes which end with 'u, e, ea' - 'rnnathinu',

'kkappedunnu', 'kalpole', 'lanivide', 'njnjathalle' .its, such

as current in amperes and magnetic field in oersteds. This

often leads to confusion because equations do not

balance dimensionally. If you must use mixed units,

clearly state the units for each quantity that you use in an

equation.

 Suffixes which end with 'i'- 'ththodukoodi', ' lumundayi',

'marundaayi' , 'ththilekkayi' , 'yallathaayi'.

 Suffixes which end 'a' – This include 'rumaayirunna' ,

'mundaayirunna', 'ndndakkiya', 'ndndavunna',

'ndndakavunna', 'yanundavuka', 'naduththulla' ,

'kalkkalla' , 'kallulla' , 'mallaththa' .

3.3 Triple Suffixes

These suffixes consist of three suffixes joined together. They

can be further classified in to the following .

 Suffixes which end with 'chillu'. They include

'ndndakkiyennal', 'ndndavukayennal', 'ngngittillengil' ,

'markadiyil' , 'markidayil', 'ndndayirunnappol' .

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 34

 Suffixes which end with 'i'. - include

'mundayirunnathayi', 'inodoppamayi'.

 Suffixes which end with 'chandrakkala' – 'kalilonnanu' ,

'kalolottallaththathu', 'kalilottallaththathanu' ,

'iyappozhanu' .

 Suffixes which end with 'ukaram' – include

'kkumaayirunnu', 'umundaayirunnu' ,

'ththilekkayirunnu'

3.4 More Than Three Suffixes

Here more than three suffixes are joined together to form a

single suffix. They include 'lokkeyundakarundengil',

'kalilottallaththathanennanu', 'ilekkayirikkum',

'millaththathukondulla' etc.

 Figure 2 Architecture of Dictionary based method

4. SYSTEM ARCHITECTURE

Here two methods are proposed, method1 - which is a

dictionary based and method2 - which is suffix tree based. The

suffix - replacement dictionary which is developed in method1

is used to create the suffix tree. Both the methods are illustrated

in the Fig. 2 and Fig. 3. The concept of suffix tree is slightly

modified. In actual definition of suffix tree, except for the root,

every internal node has at least two children and each edge is

labeled with a non-empty substring of the search word S.

The tree implemented here does not pose any such restrictions.

Here a node can have empty substring of S. The tree is being

pickled in order to make it a permanent storage. Tree pickling

is a concept in python programming where by permanent data

structures can be created.

Figure 3 Architecture of Tree based method

5. METHODOLOGY

5.1 Dictionary Based Method

The method proposed here uses a suffix replacement

methodology where it creates a Malayalam dictionary of

suffixes and replacements .This method follows a lookup table

approach as in English stemmers, but the difference is that, in

latter the lookup table is maintained only for some exceptional

cases. Here the suffix is not stripped, but the suffix tself get

replaced with another. Eg:- (avalude - aval), (vannupoyi-

varuka), (kazhukum-kazhukuka), (pokanayirikkum-pokuka),

(thengilninnanu-thengu). The Malayalam suffix-replacement

dictionary is being developed using MYSQL. The table is

permanently sorted based on the alphabetical order of the suffix

as we can see in Fig. 5.

Figure 4 Indexed Table

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 35

Since the table is a large one, in order to reduce the searching

time, it is clustered indexed as shown in Fig. 4. The clustered

index is created based on the first letter of suffixes. The search

is first directed to the index table which consists of the unique

first letter of the suffixes and pointers to the first occurrence of

the suffix starting with that unique first letter in the dictionary.

The largest suffix from the word is found out and is substituted

with the replacement in the dictionary.

1) Algorithm 1

Input: Input document and suffix -replacement dictionary

 which is clustered indexed.

Output: lemma

 Read the text and tokenize the sentences.

 Remove stop words. i = 0.

 For each token tk do

 Repeat

 ch = tk[i]. Search the clustered index for the entry ch.

 If found then

 Search the portion of the table pointed by the

 pointer for the suffix starting with ch.

 If found then

 Retrieve the replacement from the

 table corresponding to that suffix.

 Replace the suffix with the

 replacement.

 Display the lemma and exit from

loop.

 Else

 i = i + 1

 Else

 Display the token unchanged.

Until i<n

For a given input word (token) the identification of the suffix

starts from the first letter itself and only the portion of the table

consisting of the suffixes starting with that letter is being

searched. This limitation is imposed due to the presence of the

clustered index. If a suffix could not be found in that area, the

algorithm takes the next letter of the token and searches the

table in the limited area containing suffixes starting with that

letter. Once a proper suffix is found, it is replaced with the

corresponding replacement.

Figure 5 Dictionary

5.2 Tree Based Method

In this method a tree is constructed from the set of rules

available in the database. Here the rules are retrieved group

wise, where one group consists of rules which start with the

same first letter. The tree is being pickled using the pickling

technique of python which makes the tree a permanent

structure. This permanent tree is being queried in search of the

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 36

suffix. The root node of the tree is head node without storing

any identifier.

Figure 6 Tree created

The first level children are unique first letter of the suffixes.

The second level nodes are formed by taking the unique

prefixes of the suffixes in the dictionary after removing the first

letter. The third level nodes are constructed by taking the rest

of the suffix after removing the prefix from it. The leaf nodes

of the tree are the replacements. The method passes through

two phases where the first phase is dealing with tree creation

and tree pickling. The second phase is dealing with searching

the tree for a matching suffix path and replacing the matched

string in the word with the leaf node of that path. The search

starts with the first letter of the word. The letter is compared

with the identifier of the nodes in the first level children. Once

a match is found, the letter is removed from the word and

unique prefixes of the resultant string are taken. The prefixes

are now compared with the second level children of the

identified path. Once a match is found up to third level, the leaf

node is taken as the replacement of the suffix. If at any level

there is a mismatch, we do not backtrack to the previous level,

but advance the pointer in the word to the second letter and do

the above process. The back tracking is avoided by the careful

selection of prefixes in the second level node formation. All the

prefixes selected are unique and this reduces the chance of

backtracking to nil. Execution time of both tree based method

and dictionary based method is calculated for 100 Malayalam

words from Online documents and is shown in the Fig. 15. Tree

based method shows an average execution time of 0.00073s

and the dictionary based shows an average execution time of

0.0084s. Tree has reduced the searching time very much since

we need to search only a portion of the tree under a particular

start letter of the suffix. A portion of the tree created is shown

in the Fig. 6.

5.3 Algorithm 2: Tree Creation

Input -Rules from the database.

Output: Tree

 Read the rules of the form S-R group wise from

 the suffix replacement dictionary

 SFi = unique first letter of suffixes

 where i = 1 to n ; n is the number of

 unique prefixes

 Create root node Rn

 Create first level child nodes of the tree with

SFi

 For each group i do take the suffixes Sj

 where m is the no of suffixes in a group (S- R)i

 RSj = Sj - SFi

 PRk = Unique prefixes of RSj

 where k = 1 to p and p is the no of unique

 prefixes in that group

 Create second level child nodes with PRk

 RPR = RSj - PRk

 Create third level child nodes with RPR

 Create leaf nodes Rl which corresponds to the

 replacement in S-R rule, where l = 1 to r and r is the

 no of replacements

5.4 Algorithm3: Tree Search (tree, word)

Input – Word to be searched

Output – lemma

C = first letter of Wi where Wi is the ith word of the

 document.

children = level1nodes of the tree.

For each child in children do

 Compare child.identifier with C.

 If not match

 Break

 Else

 nextnode = child

 CWi = Wi - C

 children = childnodes of nextnode

 find prefixes of CWi

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 37

 For child in children do

 Compare prefixes with child.identifier

 If not match

 Break

 Else

 nextnode = child

 RWi = CWi - child.identifier

 children = childnodes of nextnode

 For child in children do

 Compare RWi with child.identifier

 If not match do

 Call Tree search (tree, CWi)

 Else

 Return leafnode

5.5 N- Gram Rules

5.5.1 bi-gram rules

As in Fig. 14, we can see that, 'thinu' can't be taken as a suffix,

as it can come with many other affixes and can create specific

rules. It can be converted to a bigram rule by considering one

more letter on the left side and the same is shown in the entries

one and two in Fig. 14. 'thinu' along with the letter 'na' and 'nja'

form two different suffixes 'nathinu' and 'njathinu' and get

replaced with two different replacements 'zhuka' and 'yuka'.

Similarly the 'ttathinu' , 'yathinu', 'thathinu' are also bigram

suffixes which are formed by considering one more letter('tta',

'ya', 'tha' respectively) on the left side of 'thinu'. They get

converted to the replacements like 'kkuka', 'vuka', 'um'

respectively.

5.5.2. Tri-gram rules

Figure 7 Suffixes which ends with 'anunasika'

Trigram rules are formed by considering two more letters to the

left of the actual suffix word. The entries 3, 4 , 6, 8 and 11 in

Fig .14 are examples of such trigram rules. As sample rule we

can take (ttiyathinu - ttuka) where two letters 'tti' and 'ya' to the

left of 'thinu' is also considered for creating the rule. The third

entry in Fig. 7 (varolam - r) is also an example of trigram rule

where the suffix is formed by adding two letters 'va' and 'r'

along with the actual suffix 'olam'. All the entries in Fig .8 and

Fig .9 are examples of n-gram rules where more than 3 letters

to the left of actual suffix is considered for the creation of the

L.H.S of the rules.

Figure 8 Suffixes which ends with 'chandrakkala'

Figure 9 Suffixes which ends with ‘anu’

6. COMPARISON WITH EXISTING METHODS

Suffix tree method is the one used in human genome project,

where a tree of suffixes is created in which every node has a

single letter of the substring to be searched, but here the nodes

in level two and level three can have more than a single letter

as the node identifier. The node in level one has only single

letter as the node identifier, which in this case is the starting

letter of the suffix. As mentioned earlier, the tree created in the

proposed method avoids backtracking with a careful selection

of prefixes. Initially common prefix with maximum length is

found out and the words with these prefixes are removed from

the list. From the remaining list , again common prefix with

maximum length is found out. This process continues until

there are no common prefixes.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 38

The method [28] has mentioned about the suffix 'yolam', the

proposed method has a related similar set which consists of the

rules given in Fig. 7. While the lalitha stemmer has given the

suffix 'kalodullathu', few similar suffixes identified by the

lemmatizer are given in Fig. 8. While the lalitha stemmer has

the implemented the suffix, 'kalilottallathathanennanu' the

proposed method identified some related rules as given in Fig.

9. Lalitha stemmer uses a suffix dictionary and the proposed

method used a suffix - replacement dictionary which is

permanently alphabetically sorted and clustered indexed,

followed by a tree created out of it. The method suggested by

[28] searches for the suffix from right to left and as mentioned

in their paper considers only stemming where word 'angangal'

get converted to 'anga' , but our method searches from left to

right and generates the output 'anagam' which is lemma, the

real meaningful word. The suffixes identified in the words

'odunnu', 'odum', 'odumbhol', 'odarundu', 'odan' , 'odiyappol' ,

'odippoyi' , 'odimari' , 'odivannu', 'odikkondu', 'odikkondirunnu'

etc get substituted with the replacement 'duka' and result in the

word 'oduka' which is the correct lemma, but most of the

Malayalam stemmers give the output 'odu' which is only the

stem. The morphological analyzer developed by [27] convert

the input word 'varum' to the output 'varu', but our method gives

the correct output 'varuka'. The method suggested by [26] gives

the output 'odu' for the input word

'odikkondirikkukayayirunnu', but our method gives the output

'oduka' which is the correct meaningful word. Comparison with

Indic stemmer can be done with the following cases and is

shown in Table II.

TABLE 2. Few Results of Vriksh Stemmer

Cases Results of Vriksh Stemmer

Case 1

The rule (rum – r) in [29], stem the words (avarum

-avar), (palarum - palar) correctly but stem the

words wrongly as (varum - var), (theerum – theer),

(chaarum - chaar) , (tharum – thar). The results

correctly obtained in the new method and the

addition of the extra rules is shown in Fig. 10. This

will take the largest matching suffix and substitute

with its replacement.

Case 2

Online stemmer has given only the rule (thilekku-

um) , but the new lemmatizer has considered

additional rules as in Fig. 11.

Case 3

While the indic stemmer has considered only the

rule (mundayirunnathayi - um + undu), the new

method has identified many additional rules as

shown in Fig. 12.

Case 4

Many stemmers developed so far generalise the

rules which lead to many stemming errors. For eg:-

(akaam – um), but is true only for certain words like

(pakamakaam – pakam). We can see that the rules

fail in the case of the words like (avaralakaam),

(mazhayakaam), (avalakaam), (vayasakaam) etc.

Some of the new suffixes identified by this method

to sort out this issue are given in Fig. 13.

Case 5

Let us consider some words like (veenathinu),
(marinjathinu), (thottathinu), (pettathinu),
(kattathinu), (njettiyathinu), (poyathinu),
(pottiyathinu), (charithrathinu), (ponnathinu). A
generalised rule can't be used here as they get
converted to their root form in different ways. The
solution is given in Fig. 14. The fourth, eighth, last
two entries in Fig. 10 and last four entries in Fig. 11
are exceptions where the suffix and
replacement is the entire word.

Case 6

The rules (nanu - n + anu), (nalla - n + alla), (nilla -
n + illa) are some of the rules in indic stemmer
which again creates the stop word 'alla',
which need to be removed again.The present
method modified the rules as (nanu - n), (nalla - n),
(nilla – n), where by it eliminates the creation of
stop words.Similar is the case with the (lanu - l +
anu), (lalla = l + alla), (lilla - l + illa). Since the
above rules create stop words 'anu', 'alla', 'illa', they
are modified as (lanu – l), (lalla - l), (lilla - l) .

Case 7

The rules (ykanayi - ykan + avuka) is actually
creating a word which need to be stemmed
again, so we have modified the replacement as
(ykuka) and the rule (kanayi - kan + avuka) is also
modified as the (kanayi – kuka) which gives the real
meaningful lemma.

Case 8

Unwanted stop words are again being created by the
rules mentioned in online stemmer which can be
seen in the following ones (yaaniva = anu + iva),
(yullava - ulla + ava), (yullathu - ulla + athu),
(yallo – none + allo). The proposed method has
created new rules which replaces all these
rules with null as R.H.S .

Case 9

The indic stemmer developed by [29] has applied
stemming rules separately for noun/verb. He has
given the rule (rilla - r + illa). This is true only for
nouns ie, (avarilla - avar + illa). In case of verb
(kavarilla), the stemmed output should be
(kavaruka + illa). The new method takes in to
consideration a lot of such stemming errors.
Similarly the indic stemmer has given the rules (nil
– n), (ril-r), (yil- null), (lil-l), but the new
method has considered a lot of relevant rules like
(kil - k), (ngil - ng), (chil - ch), (dil-d), (nnil – nn),
(thil - th) and specifically (mil - m)(Eg:- assamil -
assam) which is not addressed in indic stemmer.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 39

Cases were developed from the incorrect results shown by

indic stemmer and the new vriksh stemmer has corrected it

with bigram, trigram and ngram rules.

 Figure 10 Rules

Figure 11 Suffixes which ends with 'leykku’

Figure 12 Suffixes which ends with 'ndaayirunnathaayi'

Figure 13 List of suffixes

Figure 14 lemma

7. DATA SET

Online Malayalam documents from various domains are

considered for the testing the performance of the system

developed . The documents selected are of varying sizes as

mentioned in section 8. The results obtained from the vriksh

stemmer and the target system is being manually checked by

Malayalam speaking natives . Repeated study of the

Malayalam documents revealed that , only 50 % of the words

come with suffixes and so need to be lemmatized. Out of that ,

majority of the words end with 'chandrakkala'. The words

which end with 'anunasika' are less compared to the total

number of words to be stemmed. Statistics of distribution of

various category of words are shown in the Table III.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 40

 TABLE 3. Distribution of words in Malayalam documents

Malayalam words Categories

Average distribution
of words

 Words to be lemmatized 50 % of N

 Words which ends with
'chandrakkala '

30 % of L

 Words which ends with '

aekaaram'
20 % of L

 Words which ends with '
akaaram'

20 % of L

 Words which ends with '

ikaaram'

13 % of L

 Words which ends with '
ukaaram'

6 % of L

 Words which ends with ' chillu' 6 % of L

 Words which ends with

'anunasika'

6 % of L

 N = Total number of words in the document

 L = Total number of words to be lemmatized

8. RESULTS AND DISCUSSIONS

Comparison with other Malayalam stemmers can be done by

considering the measures like precision, recall and accuracy.

According to this project true positives, false positives , true

negatives and false negatives are defined as follows.

tp = no of words correctly lemmatized (1)

 fp = no of words mistakenly lemmatized (2)

 tn = no of words correctly not lemmatized (3)

 fn = no of words mistakenly not lemmatized (4)

For comparison online Malayalam documents were taken as

the dataset . All together documents of varying lengths are

considered. Here tp + tn forms the correct result and fp + fn

forms the incorrect result. The results obtained can be tabulated

as in Table IV. The documents are tested with dictionary based,

Tree based and Indic stemmer.The dictionary based and tree

based gives the same result as the second is developed from the

first. The difference lie in the execution time which is shown in

Fig 15. The testing was done on a system with memory – 1.9

Gb, Processor – Intel Core 2 Duo CPU T6570@2.10 Ghz x 2 ,

OS type 32 bit Ubuntu 11.10 . Accuracy , precision and recall,

F1 score measures are calculated and tabulated in Table V.

There are some words which gave incorrect results in the

proposed method .The addition of rule for correcting those

words may result in the incorrect result of other words. So such

words can be considered as the exceptional cases and should be

dealt separately. The only solution is to consider the entire

word as the suffix and the expected lemma as the replacement.

Some of the examples are (doore - door), (mylilere – myliler).

Here the false positives and false negatives shows the incorrect

results which are given by both the methods.

TABLE 4 Comparison of Results with Indic stemmer

 Vriksh Stemmer Indic Stemmer

No of words in
the dataset

Correct words % Correct words %

500 475 95 241 48

1000 821 82 563 56

2000 1706 85 782 39

2500 2025 81 1725 69

3000 2582 86 2040 68

5000 4102 82 3550 71

7500 6154 82 4651 63

10000 8608 86 4659 63

15000 14,793 98 6301 68

20000 17609 88 12000 60

Source: Indic stemmer is available online for testing. The

correct results produced by both the stemmers are manually

checked with the help of Malayalam speaking natives.

Figure 15 Comparison of Execution time

TABLE 5. Result Analysis

 Vriksh Stemmer Indic Stemmer

No of
words in

the data

set

Accu
racy

Preci
sion

Recall F1 score Accu
racy

Preci
sion

Recall F1 score

500 0.95 0.96 0.98 0.97 0.48 0.68 0.61 0.64

1000 0.82 0.78 0.94 0.85 0.56 0.43 0.47 0.45

2000 0.85 0.90 0.77 0.83 0.39 0.48 0.26 0.34

2500 0.81 0.75 0.80 0.77 0.69 0.88 0.44 0.59

3000 0.86 0.88 0.79 0.83 0.68 0.80 0.42 0.55

5000 0.82 0.85 0.87 0.86 0.71 0.71 0.52 0.59

7500 0.82 0.93 0.88 0.90 0.63 0.87 0.58 0.70

10000 0.86 0.79 0.98 0.86 0.63 0.78 0.61 0.68

15000 0.98 0.98 0.98 0.98 0.68 0.77 0.61 0.68

20000 0.88 0.84 0.98 0.90 0.60 0.77 0.40 0.53

Source: Since online documents from various domains are

considered, it may effect the results in different cases.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 41

9. CONCLUSIONS

There has been a lot of work in Indian languages for developing

stemmers, taggers, translators etc. These types of applications

help the people to communicate and work in their own mother

tongue rather than depending on other languages. Now a lot of

softwares dealing with native languages are available as mobile

applications. There lies the importance of this project. The

implementation of the tree based method makes the retrieval

faster. The paper has discussed both the positive and negative

sides of the proposed method. There is still room for

improvement and the accuracy can be increased by adding

more and more rules. Moreover the number of nodes can be

reduced by making the method graph based. As no lemmatizer

is available online for performance comparison and since Indic

stemmer is the only link available online, the performance

could be directly compared with it. On an average the proposed

method has shown an accuracy of 87%.

REFERENCES

[1] Prejisha K,Dr Reghuraj P.C , “Stemmer for Malayalam Using Three Pass

Algorithm”, International Conference on Control Communication and
Computing (ICCC), 2013.pp. 149-152.

[2] Marçal Rusiñol , Volkmar Frinken , Dimosthenis Karatzas , Andrew D.

Bagdanov, Josep Lladós, “Multimodal page classification in
administrative document image streams”, International Journal of

Document Analysis and Recognition, IJDAR 17: 2014.pp. 331–341
[3] Hongxi Wei · Guanglai Gao, “A keyword retrieval system for historical

Mongolian document images”, International Journal of Document

Analysis and Recognition , IJDAR, 2014.Vol 17:pp.33–45.
[4] Arwa Alqudsi, Nazlia Omar, Khalid Shaker,”Arabic Machine

Translation:A survey” , Artificial Intelligence Review, 2014. Vol. 42, pp.
549-572.

[5] Elaheh Asghari , MohammadReza KeyvanPour, “XML document

clustering: techniques and challenges”, Artificial Intelligence Review ,
2015. Vol. 43, pp.417-436.

[6] Nagwani N K, “Summarizing large text collection using topic modeling
and clustering based on MapReduce framework”, Nagwani Journal of

Big Data 2:6, 2015.

[7] Gheith A, Abandah, Alex Graves , Balkees Al-Shagoor, “Automatic
diacritization of Arabic text using recurrent neural networks”,

International Journal on Document Analysis and Recognition, 2015, Vol
18, pp. 183-197.

[8] Osama Mohamed Elrajubi,”An Improved Arabic Light Stemmer” , Third

International Conference on Research and Innovation in Information
Systems, 2013, pp. 33-38.

[9] Ayu Purwarianti, “A Non Deterministic Indonesian Stemmer”,
International Conference on Electrical Engineering and

Informatics,2011.

[10] Cristian Moral, Angelica de Antonio, Ricardo Imbert, “A survey of
stemming algorithms in Information Retrieval”, Information Research,

2014, Vol.19, No.1.
[11] Walid Cherif , Abdellah Madani, Mohamed Kissi, “Integrated effective

rules to Improve Arabic Text Stemming”, IEEE , 2014. pp. 1077 – 1081.

[12] Vishal Gupta,Gurpreet Singh Lehal , “A survey of Common Stemming
Techniques and Existing Stemmers for Indian Languages”, Journal of

Emerging Technologies in WebIntelligence ,2013, Vol 5, No. 2 , 157-
161.

[13] Jikitsha Sheth, Bankim Patel, Dhiya : “A Stemmer for morphological

level analysis of Gujarati language” , International Conference on Issues
and Challenges in Intelligent Computing Techniques,2014,pp. 151-154.

[14] Redowan Mahmud Md, Mahbuba Afrin, Md. Abdur Razzaque Ellis
Miller, Joel Iwashige, “A rule based Bengali stemmer”, ICACCI,2014,

pp.2750 – 2756 .
[15] Vasudevan N, Pushpak Bhattacharya, Little by little Semi Supervised

Stemming through Stem Set Minimization, ijcnlp , 2013.

[16] Vasudevan N.,Pushpak Bhattacharyya, Optimal Stem Identification in
Presence of Suffix List, Computational linguistic and Intelligent Text

Processing , 13th International Conference CICLing, ed . Alexander
Gelbukh, New Delhi, Springer Berlin Heidelbeg, ,2012, pp.92- 103 .

[17] Rohit Kansal, Vishal Goyal and Lehal G.S, Rule Based Urdu Stemmer,

Proceedings of COLING,2012, pp. 267 - 276.
[18] Upendra Mishra et al, MAULIK: An Effective Stemmer for Hindi

Language, International Journal on Computer Science and Engineering
,2012,Vol. 4 , No. 05 .pp. 711 – 717.

[19] Gupta V and Lehal G. S, Punjabi Language Stemmer for Nouns and

Proper Names, Proceedings of the 2nd Workshop on South and Southeast
Asian Natural Language Processing , 2011,pp.35-39.

[20] Satyendr Singh and Tanveer J. Siddiqui,Evaluating Effect of Context
Window Size, Stemming and Stop Word Removal on Hindi Word Sense

Disambiguation, IEEE , 2012.

[21] Das .S and Mitra . P, A Rule-based Approach of Stemming for
Inflectional and Derivational Words in Bengali, Proceeding of the 2011

IEEE Students' Technology Symposium , IIT Kharagpur, 2011,pp.134 –
136.

[22] Vishal Gupta,Hindi Rule Based Stemmer for Nouns, International

Journal of Advanced Research in Computer Science and Software
Engineering, Vol. 4, Issue 1, 62-65, 2014.

[23] Kasthuri. M, Britto Ramesh Kumar S,An Improved Rule based Iterative
Affix Stripping Stemmer for Tamil Language using K-Mean Clustering,

International Journal of Computer Applications , 2014, Vol.94 - No. 13,

36 – 41.
[24] Ramachandran V.A, Illango Krishnamurthi,An Iterative Stemmer for

Tamil language, ACIIDS, Springer , 2012.
[25] Vijay Sundar Ram and Sobha Lalitha Devi ,Malayalam Stemmer,

Morphological Analysers and Generators, ed. Mona Parakh, LDC-IL,

Mysore, 2010,pp. 105 –113.
[26] Vinod P.M, jayan V, Bhadran V.K, Implementation of Malayalam

Morphological Analyzer Based on Hybrid Approach, Proceedings of the
Twenty-Fourth Conference on Computational Linguistics and Speech

Processing, ROCLING, 2012, pp. 307 – 317.

[27] Jisha P. jayan , Rajeev R.R, Dr S. Rajendran, Morphological Analyser
and Morphological Generator for Malayalam - Tamil Machine

Translation, International Journal of Computer Applications,2011,
Vol.13-No.8, pp 15 - 18.

[28] Prejitha U, Sreejith C, Reghu Raj P.C,Lalitha : A light weight Malayalam

Stemmer using Suffix Stripping Method, International Conference on
Control Communication and Computing (ICCC),2013,pp. 244 – 248 .

[29] Santhosh Thottingal , www.silpa.org/stemmer , SILPA project ,2014.

Authors

Dhanya P.M is currently working as Assistant

professor in the Department of Computer Science
and Engineering, Rajagiri School of Engineering

and Technology, Rajagiri Valley, Kakkanad. She
is also a research scholar in the Department of

Computer Applications, Cochin University of

Science and Technology, Kalamassery. She
obtained her B.Tech and M.Tech degree from

Cochin University of Science and Technology.
Her areas of specialization include Natural

language processing, Data mining, Soft

Computing.

Dr.Sreekumar A is working as Associate Professor in the Department of

Computer Applications, CUSAT. He took his Masters degree in M.Sc.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 1, January (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 42

Mathematics, M.Tech. Computer Science and
Ph.D in Cryptography. He has 24 publications

to his credit.

Dr.Jathavedan M is working as Professor
Emeritus in the Department of Computer

Applications, CUSAT. He took his Masters
degree in M.Sc Mathematics and Ph.D in Fluid

Mechanics. His area of specialization include

Fluid Mechanics, Differential Equations and
Language Computing.

